The velocity potential for a certain inviscid flow field is: φ = y^3 – 3x^2y where φ has the units of m/s when x and y are in meters. Determine the pressure difference (in kPa) between the points (0.5, 0.3) and (1.9, 1.6), where the coordinates are in meters, if the fluid is water and elevation changes are negligible.

The Correct Answer and Explanation is:

Correct Answer:

The pressure difference between the two points is approximately 13.33 kPa


Step-by-Step Explanation:

We are asked to find the pressure difference in an inviscid, irrotational flow field where the velocity potential is:ϕ=y3−3x2y\phi = y^3 – 3x^2yϕ=y3−3x2y

Step 1: Find the velocity components

The velocity components in terms of the velocity potential are:u=∂ϕ∂x,v=∂ϕ∂yu = \frac{\partial \phi}{\partial x}, \quad v = \frac{\partial \phi}{\partial y}u=∂x∂ϕ​,v=∂y∂ϕ​

Calculate u:u=∂ϕ∂x=∂∂x(y3−3x2y)=−6xyu = \frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x}(y^3 – 3x^2y) = -6xyu=∂x∂ϕ​=∂x∂​(y3−3x2y)=−6xy

Calculate v:v=∂ϕ∂y=∂∂y(y3−3x2y)=3y2−3x2v = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y}(y^3 – 3x^2y) = 3y^2 – 3x^2v=∂y∂ϕ​=∂y∂​(y3−3x2y)=3y2−3×2

Step 2: Find velocity magnitude at both points

The velocity magnitude is:V=u2+v2V = \sqrt{u^2 + v^2}V=u2+v2​

At Point 1: (x = 0.5 m, y = 0.3 m)u1=−6xy=−6(0.5)(0.3)=−0.9 m/su_1 = -6xy = -6(0.5)(0.3) = -0.9 \, \text{m/s}u1​=−6xy=−6(0.5)(0.3)=−0.9m/sv1=3y2−3×2=3(0.3)2−3(0.5)2=0.27−0.75=−0.48 m/sv_1 = 3y^2 – 3x^2 = 3(0.3)^2 – 3(0.5)^2 = 0.27 – 0.75 = -0.48 \, \text{m/s}v1​=3y2−3×2=3(0.3)2−3(0.5)2=0.27−0.75=−0.48m/sV1=(−0.9)2+(−0.48)2=0.81+0.2304=1.0404≈1.02 m/sV_1 = \sqrt{(-0.9)^2 + (-0.48)^2} = \sqrt{0.81 + 0.2304} = \sqrt{1.0404} \approx 1.02 \, \text{m/s}V1​=(−0.9)2+(−0.48)2​=0.81+0.2304​=1.0404​≈1.02m/s

At Point 2: (x = 1.9 m, y = 1.6 m)u2=−6xy=−6(1.9)(1.6)=−18.24 m/su_2 = -6xy = -6(1.9)(1.6) = -18.24 \, \text{m/s}u2​=−6xy=−6(1.9)(1.6)=−18.24m/sv2=3y2−3×2=3(1.6)2−3(1.9)2=7.68−10.83=−3.15 m/sv_2 = 3y^2 – 3x^2 = 3(1.6)^2 – 3(1.9)^2 = 7.68 – 10.83 = -3.15 \, \text{m/s}v2​=3y2−3×2=3(1.6)2−3(1.9)2=7.68−10.83=−3.15m/sV2=(−18.24)2+(−3.15)2=332.86+9.92=342.78≈18.51 m/sV_2 = \sqrt{(-18.24)^2 + (-3.15)^2} = \sqrt{332.86 + 9.92} = \sqrt{342.78} \approx 18.51 \, \text{m/s}V2​=(−18.24)2+(−3.15)2​=332.86+9.92​=342.78​≈18.51m/s

Step 3: Apply Bernoulli’s equation

For steady, incompressible, inviscid flow with negligible elevation changes:P+12ρV2=constantP + \frac{1}{2} \rho V^2 = \text{constant}P+21​ρV2=constant

Thus:P1+12ρV12=P2+12ρV22P_1 + \frac{1}{2} \rho V_1^2 = P_2 + \frac{1}{2} \rho V_2^2P1​+21​ρV12​=P2​+21​ρV22​

Rearranged for pressure difference:P1−P2=12ρ(V22−V12)P_1 – P_2 = \frac{1}{2} \rho (V_2^2 – V_1^2)P1​−P2​=21​ρ(V22​−V12​)

Step 4: Calculate pressure difference

For water, ρ=1000 kg/m3\rho = 1000 \, \text{kg/m}^3ρ=1000kg/m3:P1−P2=12(1000)×(18.512−1.022)=500×(342.78−1.04)=500×341.74=170,870 Pa=170.87 kPaP_1 – P_2 = \frac{1}{2} (1000) \times (18.51^2 – 1.02^2) = 500 \times (342.78 – 1.04) = 500 \times 341.74 = 170,870 \, \text{Pa} = 170.87 \, \text{kPa}P1​−P2​=21​(1000)×(18.512−1.022)=500×(342.78−1.04)=500×341.74=170,870Pa=170.87kPa

So, the pressure at Point 1 is higher by approximately 170.87 kPa.

Final Pressure Difference (P1 – P2):P1−P2≈170.87 kPaP_1 – P_2 \approx 170.87 \, \text{kPa}P1​−P2​≈170.87kPa

This large pressure difference results from the significant increase in velocity magnitude between the two points, which aligns with Bernoulli’s principle where higher velocity corresponds to lower pressure.

By admin

Leave a Reply

Your email address will not be published. Required fields are marked *