The standard helix has parameterization . Find the curvature of the helix. Does the result agree with your intuition?
The correct answer and explanation is:
Okay, let’s find the curvature of the standard helix.
The standard helix has the parameterization:
r(t)=(acost,asint,bt)\mathbf{r}(t) = (a \cos t, a \sin t, bt)r(t)=(acost,asint,bt)
To find the curvature
κ\kappaκ
, we can use the formula:
κ=∣∣r′(t)×r′′(t)∣∣∣∣r′(t)∣∣3\kappa = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}κ=∣∣r′(t)∣∣3∣∣r′(t)×r′′(t)∣∣
First, we find the first and second derivatives:
r′(t)=ddt(acost,asint,bt)=(−asint,acost,b)\mathbf{r}'(t) = \frac{d}{dt}(a \cos t, a \sin t, bt) = (-a \sin t, a \cos t, b)r′(t)=dtd(acost,asint,bt)=(−asint,acost,b)
r′′(t)=ddt(−asint,acost,b)=(−acost,−asint,0)\mathbf{r}''(t) = \frac{d}{dt}(-a \sin t, a \cos t, b) = (-a \cos t, -a \sin t, 0)r′′(t)=dtd(−asint,acost,b)=(−acost,−asint,0)
Next, we calculate the magnitude of the first derivative (the speed):
∣∣r′(t)∣∣=(−asint)2+(acost)2+b2=a2sin2t+a2cos2t+b2||\mathbf{r}'(t)|| = \sqrt{(-a \sin t)^2 + (a \cos t)^2 + b^2} = \sqrt{a^2 \sin^2 t + a^2 \cos^2 t + b^2}∣∣r′(t)∣∣=(−asint)2+(acost)2+b2=a2sin2t+a2cos2t+b2
∣∣r′(t)∣∣=a2(sin2t+cos2t)+b2=a2(1)+b2=a2+b2||\mathbf{r}'(t)|| = \sqrt{a^2(\sin^2 t + \cos^2 t) + b^2} = \sqrt{a^2(1) + b^2} = \sqrt{a^2 + b^2}∣∣r′(t)∣∣=a2(sin2t+cos2t)+b2=a2(1)+b2=a2+b2
Now, we calculate the cross product of the first and second derivatives:
r′(t)×r′′(t)=∣ijk−asintacostb−acost−asint0∣\mathbf{r}'(t) \times \mathbf{r}''(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -a \sin t & a \cos t & b \\ -a \cos t & -a \sin t & 0 \end{vmatrix}r′(t)×r′′(t)=i−asint−acostjacost−asintkb0
=i((acost)(0)−b(−asint))−j((−asint)(0)−b(−acost))+k((−asint)(−asint)−(acost)(−acost))= \mathbf{i}((a \cos t)(0) - b(-a \sin t)) - \mathbf{j}((-a \sin t)(0) - b(-a \cos t)) + \mathbf{k}((-a \sin t)(-a \sin t) - (a \cos t)(-a \cos t))=i((acost)(0)−b(−asint))−j((−asint)(0)−b(−acost))+k((−asint)(−asint)−(acost)(−acost))
=i(absint)−j(abcost)+k(a2sin2t+a2cos2t)= \mathbf{i}(ab \sin t) - \mathbf{j}(ab \cos t) + \mathbf{k}(a^2 \sin^2 t + a^2 \cos^2 t)=i(absint)−j(abcost)+k(a2sin2t+a2cos2t)
=(absint,−abcost,a2(sin2t+cos2t))=(absint,−abcost,a2)= (ab \sin t, -ab \cos t, a^2(\sin^2 t + \cos^2 t)) = (ab \sin t, -ab \cos t, a^2)=(absint,−abcost,a2(sin2t+cos2t))=(absint,−abcost,a2)
Finally, we calculate the magnitude of the cross product:
∣∣r′(t)×r′′(t)∣∣=(absint)2+(−abcost)2+(a2)2||\mathbf{r}'(t) \times \mathbf{r}''(t)|| = \sqrt{(ab \sin t)^2 + (-ab \cos t)^2 + (a^2)^2}∣∣r′(t)×r′′(t)∣∣=(absint)2+(−abcost)2+(a2)2
=a2b2sin2t+a2b2cos2t+a4=a2b2(sin2t+cos2t)+a4= \sqrt{a^2 b^2 \sin^2 t + a^2 b^2 \cos^2 t + a^4} = \sqrt{a^2 b^2(\sin^2 t + \cos^2 t) + a^4}=a2b2sin2t+a2b2cos2t+a4=a2b2(sin2t+cos2t)+a4
=a2b2(1)+a4=a2b2+a4=a2(b2+a2)= \sqrt{a^2 b^2(1) + a^4} = \sqrt{a^2 b^2 + a^4} = \sqrt{a^2(b^2 + a^2)}=a2b2(1)+a4=a2b2+a4=a2(b2+a2)
Assuming
a>0a > 0a>0
, this is
aa2+b2a \sqrt{a^2 + b^2}aa2+b2
.
Now, substitute these magnitudes into the curvature formula:
κ=aa2+b2(a2+b2)3=a(a2+b2)1/2(a2+b2)3/2=a(a2+b2)1/2−3/2=a(a2+b2)−1\kappa = \frac{a \sqrt{a^2 + b^2}}{(\sqrt{a^2 + b^2})^3} = \frac{a (a^2 + b^2)^{1/2}}{(a^2 + b^2)^{3/2}} = a (a^2 + b^2)^{1/2 - 3/2} = a (a^2 + b^2)^{-1}κ=(a2+b2)3aa2+b2=(a2+b2)3/2a(a2+b2)1/2=a(a2+b2)1/2−3/2=a(a2+b2)−1
κ=aa2+b2\kappa = \frac{a}{a^2 + b^2}κ=a2+b2a
The curvature of the standard helix
r(t)=(acost,asint,bt)\mathbf{r}(t) = (a \cos t, a \sin t, bt)r(t)=(acost,asint,bt)
is κ=aa2+b2\kappa = \frac{a}{a^2 + b^2}κ=a2+b2a .
Explanation and Intuition:
The result
κ=aa2+b2\kappa = \frac{a}{a^2 + b^2}κ=a2+b2a
indicates that the curvature of the standard helix is constant, meaning it bends the same amount at every point. This makes sense intuitively because the helix is symmetric and uniform; its shape doesn’t change as you move along it.
Let’s consider how the parameters
aaa
and
bbb
affect the curvature:
- Parameter ‘a’: This represents the radius of the cylinder the helix wraps around. If
aaais large, the helix is wide. Ifaaais small, it’s narrow. Our intuition suggests a wider helix (largeraaa) should be less curved. The formulaκ=aa2+b2\kappa = \frac{a}{a^2 + b^2}κ=a2+b2aconfirms this: asaaaincreases (whilebbbis fixed), the denominatora2+b2a^2+b^2a2+b2grows faster than the numeratoraaa, causingκ\kappaκto decrease. For example, comparea=1,b=1a=1, b=1a=1,b=1(κ=1/2\kappa = 1/2κ=1/2) toa=10,b=1a=10, b=1a=10,b=1(κ=10/101≈0.1\kappa = 10/101 \approx 0.1κ=10/101≈0.1). - Parameter ‘b’: This parameter relates to the “pitch” or vertical steepness of the helix. If
bbbis large, the helix rises quickly and is more stretched out vertically. Ifbbbis small, it rises slowly and is more compressed vertically, becoming closer to a circle. Our intuition suggests a steeper, more stretched-out helix (largerbbb) should be less curved. The formula confirms this: asbbbincreases (whileaaais fixed), the denominatora2+b2a^2 + b^2a2+b2increases, causingκ\kappaκto decrease.
Consider the extreme cases:
- If
b=0b=0b=0, the parameterization becomesr(t)=(acost,asint,0)\mathbf{r}(t) = (a \cos t, a \sin t, 0)r(t)=(acost,asint,0), which is a circle of radiusaaain the xy-plane. The curvature formula givesκ=aa2+02=aa2=1a\kappa = \frac{a}{a^2 + 0^2} = \frac{a}{a^2} = \frac{1}{a}κ=a2+02a=a2a=a1. This matches the well-known curvature of a circle of radiusaaa, agreeing perfectly with intuition. - If
a=0a=0a=0, the parameterization becomesr(t)=(0,0,bt)\mathbf{r}(t) = (0, 0, bt)r(t)=(0,0,bt), which is a straight line along the z-axis. The curvature formula givesκ=002+b2=0\kappa = \frac{0}{0^2 + b^2} = 0κ=02+b20=0(as long asb≠0b \neq 0b=0). This also matches the intuition that a straight line has zero curvature.
The formula
κ=aa2+b2\kappa = \frac{a}{a^2 + b^2}κ=a2+b2a
therefore aligns well with the geometric intuition of how the radius and the steepness of a helix affect its bending.